A Proposal to Dinamically Manage Virtual Enviroments in Heterogeneous Computing Facilities
L. Servoli’, M. Mariotti?, R. M. Cefal&?

TINFN Perugia, Perugia, ltaly; 2Dipar’[imento di Fisica, Universita di Perugia, Perugia, ltaly;

ncreasing [Fesources Heterogenelty and Relative Arsing Proolems

The implementation of modern distributed computing systems is leaning toward the ever growing practice of resource sharing among differed entities to reach high computing
aggregate capabilities sharing the burden of investments, management and development. The drawback of this approach is the unavoidable growth of resources heterogeneity
due to both the geographically dispersed nature of the organizations, and their specific needs, requirements and update schedules. Furthermore, there is the insurgence of (N EQ

classes of applications requiring mutually incompatible execution enviroments.

This problem becomes much more difficult for those cases where resource management policies are subjected also to centralized organization as in computing grids: the
adoption of operating systems and/or software packages and their updates are imposed by global policies, but there are often non trivially compatible local constraints. Class A
As an example, applications developed by some of the local user groups may need long validation times before being safely ported to a new operating system or use a new Class B /_q

library version.

A common solution adopted to face, at least partially, these problems is to divide the resources in classes to satisfy the various incompatible purposes. However this solution Shared D E
is typically the source of management complications and of the sub-optimal use of shared resources as shown in the following use-case: the resources of a distributed R ——

computing system are assigned to three classes in a mutually exclusive way. Class C
Since one class is not able to execute the tasks intended for another one, when there is an imbalanced workload, the resources assigned to this class are heavily loaded and

can rapidly become insufficient, while the resources belonging to the other classes may be in an idle state.

Proposed Selution

Manager Batch System The proposed idea is to introduce a dynamic management of execution enviroments in order to have them started on-demand, according to the
. Scheduler real requests, without modifing the resource management system.
equests - i . .y
T Queues Informations. Client To reach this goal it is necessary to decouple the execution enviroments from the hardware resources using virtualization techniques (Xen) in order

to activate a new virtual machine for an incoming job request.
Some mechanisms are needed:

Class Ajobs Queve
Class Bjobs Queue - To define execution enviroments and classes of execution enviroments.
ﬁ _ j : - To monitor resource status on the system.
- To control services and execution requests.
- To decide about the activation of the execution enviroments.

Start Enviroments

Decision Logic

Resources Status m m FD m Job Flow | A client/server application that will work side by side and asynchronously with a pre-existing resource management system has been developed,
flexible enough to be used in many scenarios. The figure on the left shows the possible implementation on a batch system.
Clients will be executed on each worker node and on the batch scheduler and will be capable of extracting sensible informations from the hosting
operating systems and execute commands issued by the decision logic residing on the server side called Manager.
Glient Client Glient Client Glient The information extraction and the commands definition is done through property and command plugins, so there's no limitation to the type of
extracted informations and commands.

The Manager will query properties from Clients and will base its decisions using the received data within a set of custom defined rules. The
Manager will then send the commands to the relevant Clients to be executed on their hosts.

Web References about the Xen Hypervisor: htto.//www.xen.org/

[mplemEentation
Manager/Client Communication Protocol . Client
e | O The client side is written in python with a multithreaded architecture | gen® ‘\

A protocol to allow the Manager/Client interaction has been S d tahsesg(?rm;megaetig%ug?o?gcg}? right. An interface module implements \ parm e
implemented using the group communication system Spread Toolkit. g O @ The Runner module allows the execution of commands issued by raceDaemon i
It provides a distributed message bus, as shown in the right figure, a s the manager and the asyncronous extraction of properties from the ReaderD
allowing efficient messaging with in-order guaranteed delivery. ;s | peemen host system under the control of the Reader module. (/e
Spread allows to define and manage groups of clients and to serve multicast : / Below is shown an example of property definition:
and point-to-point messages. il MR

Client ram rree

Since the application is written in python, to implement the protocol we used the
SpreadModule wrapper that allows an high level abstraction of the underlaying Spread sub-

command = ram
parameters = MemFree

system. Two sets of messages (see tables) are provided by the protocol: e e = o
ticks = 60
Membership messages are generated by the Spread sub-system and received by the Manager when a
Client joins or leaves a group or when it disconnects. The Manager is then able to react to status changes. Manager
Data Structures As well as the Client the Manager is written in python and consists
Fields | MEMBERSHIP MESS | group |reason| extra | (Glents st Groups Befition of various threads: two for communication (Listener, Sender) and
Type Integer String Integer String B — Triggers one for decision logic (TriggerWatch).

The Manager listens on the Spread network, and updates its data
structures with the status of the Client groups. It also periodically
sends to Clients requests for properties and aggregates data.

An event based mechanism, implemented through the use of
programmable Triggers, defines the decision logic used by the

Meaning Message Type Id. Group Name | EventId. Client Name

Regular Messages are used for properties and commands exchange. The semantic of the informative
content is recognized from the msg _type field of the message. The Manager is able to query the Clients

Communication Handling

which reply sending the requested properties or the return values of the issued commands. (istener, Senden Manager to choose the commands and the requests to be sent to
the Clients.
Fields | REGULAR MESSAGE | groups |méssage | msg type |sender o To Clients
Type Integer List String Integer String A Trigger definition is made of (example on the right): _
Meaning Message Type Id. Recipients | "Payload" | Message Code | Sender - An event expression. [client _query] _
- An event_handling command. expr = { len(manager.clients) != 0 }

cmd = { sender.send get property() }
Both can be implemented using python syntax. When the event ticks = 30

Web References about the Spread Toolkit: http://www.spread.org/

\ expression is evaluated true the command gets executed. T, PR GEEEE = 0 D
Testbed Performance Evaluation
infolab. The prototype has been implemented on the University of Several tests have been performed in order to evaluate:
D D D = Perugia Physics Department Computer Science Laboratory. - The messaging protocol efficiency.
/ The 35 diskless workstations were equipped with Xen 3.x - The amount of Memory and CPU used by the Manager.
/ / / Avell using a shared NFS root filesystem hosted on the boot server - The scalability of the prototype.
/ / / virtdom.
D D D . The Manager is set up to run on virtdom as well as the spread The Manager was configured to poll the clients each 10s. The Clients were set up to respond with
gli— daemon. Each workstation is capable to run at least 50 Clients one property of 10kb or 100kb size. It should be noticed that in a real usage scenario the messages
Domo Pool via NFS (depending on the size of RAM) for testing purposes. The size is much lower.
Interconnecting network is a standard 100Mbit/s Ethernet. Varying the number of Clients we can see the Manager behaviour in different traffic conditions.

Test Results

The graphs below show the usage in kilobytes per second of the network interface of the node ' ' ! T oot ey —
where the Manager is running. 00 - - A .

In the left graph there is no restrictions on the rate of the outgoing messages, and the spikes) - 2T | %08

reach over 3000kb/s; this value is consistent with the traffic generated by 300 clients sending T f . Sl | 10000

each a 10kb message at the same time. 100 - -

In the right graph the Manager is configured to limit the rate of outgoing messages, including s | l T l

queries, at 10 messages per second to avoid the excessive instantaneous usage of the network —r—r——r—"2 0 ol .] oo b]

(Clients) (Clients) (Clients)

The three plots above show the average usage of the resources: Network, CPU Percentage and Virtual Memory.
Data were obtained averaging over 5 minutes the resources usage due the Manager varying the number of Clients.
The charts show that the amount of resources used by the Manager grows almost linearily in respect to the number
of Clients. This means that the upward scalability possibilities of the prototype are good.

by the messaging system. The results are shown for the 100 Clients case, but the same graph
has been found for 300 Clients. As can be seen the download value is on average 100kb/s as
expected.

The collected data show the regularity of the network traffic generated by the messaging system
at an operational regime for the target use case. Is to be noticed the capability of the Manager to
adapt the network usage to the eventual constraints of a congested network.

Further tests have been carried out also with 100kb message size. In this case the results are
consistent with the 10kb taking into account the scale factor due to the message size. No evident Future Works
bottlenecks have been found.

. . l — . . l — The results obtained from the tests satisty the usage constraints of a typical medium sized computing facility like the
2000 | T T4 L itfaataiael INFN GRID site at the University of Perugia Physics Department (~100-200 nodes). Other tests must be performed
2500 |- | on the prototype to reach a production level reliability before it could be used in a real production enviroment.
2000 |- i ﬁ i | Those further tests are aimed at the evaluation of the capabilities and performances of Virtual Enviroments Handling
2 oo - £r I by the Manager according to Decision Policies.
el _ a0 - - This phase will be followed by the definition of evaluation metrics in order to estimate the impact on job queue times
oL _ 20 | i and on the aggregated throughtput of the batch system.
L ANRnnnnnnn o T T e T A fully working prototype will be implemented in the aforementioned INFN GRID site by the end of the year 2008.

o} 50 100 150 200 250 300 o} 50 100 150 200 250 300

Presented at IEEE NSS/MIC '08
19 - 25 October 2008 Dresden, Germany

	Pagina 1

